ec 2 00 5 The Ternary Expansions of Powers of 2

نویسنده

  • Jeffrey C. Lagarias
چکیده

P. Erdős asked how frequently the ternary expansion of 2 omits the digit 2. He conjectured this holds only for finitely many values of n. We generalize this question to iterates of two discrete dynamical systems. We consider real sequences xn(λ) = ⌊λ2 ⌋, where λ > 0 is a real number, and 3-adic integer sequences yn(λ) = λ2 , where λ is a 3-adic integer. We show that the set of initial values having infinitely many iterates that omit the digit 2 is small in a suitable sense, and for each nonzero initial value we obtain an asymptotic upper bound as k → ∞ on the the number of the first k iterates that omit the digit 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 M ay 2 00 7 Ternary Expansions of Powers of 2 Jeffrey

P. Erdős asked how frequently 2 has a ternary expansion that omits the digit 2. He conjectured this holds only for finitely many values of n. We generalize this question to consider iterates of two discrete dynamical systems. The first considers ternary expansions of real sequences xn(λ) = ⌊λ2 ⌋, where λ > 0 is a real number, and the second considers 3-adic expansions of sequences yn(λ) = λ2 , ...

متن کامل

Ju l 2 00 8 Ternary Expansions of Powers of 2 Jeffrey

P. Erdős asked how frequently does 2n have a ternary expansion that omits the digit 2. He conjectured that this holds only for finitely many values of n. We generalize this question to consider iterates of two discrete dynamical systems. The first considers truncated ternary expansions of real sequences xn(λ) = ⌊λ2n⌋, where λ > 0 is a real number, along with its untruncated version, while the s...

متن کامل

Expansions of Powers of 2 Jeffrey

P. Erdős asked how frequently 2 has a ternary expansion that omits the digit 2. He conjectured this holds only for finitely many values of n. We generalize this question to consider iterates of two discrete dynamical systems. The first considers ternary expansions of real sequences xn(λ) = ⌊λ2 ⌋, where λ > 0 is a real number, and the second considers 3-adic expansions of sequences yn(λ) = λ2 , ...

متن کامل

Perfect Powers with Few Ternary Digits

We classify all integer squares (and, more generally, q-th powers for certain values of q) whose ternary expansions contain at most three digits. Our results follow from Padé approximants to the binomial function, considered 3-adically.

متن کامل

#A3 INTEGERS 12A (2012): John Selfridge Memorial Issue PERFECT POWERS WITH FEW TERNARY DIGITS

We classify all integer squares (and, more generally, q-th powers for certain values of q) whose ternary expansions contain at most three digits. Our results follow from Padé approximants to the binomial function, considered 3-adically. –Dedicated to the memory of John Selfridge.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005